Abstract

Enzymes with hydroxylating activity on alkanes have potential application as biotransformation catalysts in chemical and pharmaceutical industry. Genome of Alcanivorax borkumensis, a marine bacterium with hydrocarbon dissimilation activity, contains at least two P450 monooxygenases and two nonheme monooxygenases, AlkB1 and AlkB2, respectively. Presumably, all these enzymes possess alkane hydroxylating activity. Both AlkB1 and AlkB2 are membrane proteins. Two accessory proteins, rubredoxin and rubredoxin reductase, supply the reducing equivalent from nicotinamide adenine dinucleotide phosphate reduced (NADPH to hydroxylases. Rubredoxin reductase catalyses the reduction of rubredoxin by oxidation of NADPH, and rubredoxin transfers the electrons to the alkane hydroxylase to complete the hydroxylation reaction. Here, we sought to investigate the expression of alkB1 gene in Escherichia coli. Therefore, we amplified alkB1 gene from A. borkumensis genome by polymerase chain reaction and cloned it in the expression vector pET26 upstream of His-tag sequence. Predisposed BL21 (DE3) cells were transformed by the recombinant vector. At last, expression of recombinant enzyme was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Regarding the potential ability of this enzyme in hydroxylation of long-chained alkanes, the application of it would be studied in petroleum downstream industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.