Abstract

We have cloned from Bacillus subtilis a novel protease gene (nprB) encoding a neutral protease by using a shotgun cloning approach. The gene product was determined to have a molecular mass of 60 kDa. It has a typical signal peptide-like sequence at the N-terminal region. The expression of nprB can be stimulated by using a B. subtilis strain, WB30, carrying a sacU(h)h mutation. Expression of this protease gene results in production of a 37-kDa protease in the culture medium. The first five amino acid residues from the N terminus of the mature protease were determined to be Ala-Ala-Gly-Thr-Gly. This indicates that the protease is synthesized in a preproenzyme form. The purified protease has a pH optimum of around 6.6, and its activity can be inhibited by EDTA, 1,10-phenanthroline (a zinc-specific chelator), and dithiothreitol. It retained 65% of its activity after treatment at 65 degrees C for 20 min. Sequence comparison indicates that the mature form of this protease has 66% homology with the two thermostable neutral proteases from B. thermoproteolyticus and B. stearothermophilus. It also shares 65, 61, and 56% homology with the thermolabile neutral proteases from B. cereus, B. amyloliquefaciens, and B. subtilis, respectively. The zinc-binding site and the catalytic residues are all conserved among these proteases. Sequence homology extends into the "propeptide" region. The nprB gene was mapped between metC and glyB and was not required for growth or sporulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.