Abstract

Recent molecular cloning studies in mammals and amphibians have demonstrated that the types I, II, and III deiodinases constitute a family of selenoproteins of critical importance in metabolizing T4 to active (i.e. T3) and inactive (i.e. rT3) metabolites. In several tissues of teleost fish, various deiodinase processes have been described, but the structural and functional characteristics of these enzymes and their relationship to the deiodinases present in higher vertebrates remains uncertain. Using a complementary DNA library derived from the liver of the teleost Fundulus heteroclitus, we have identified a complementary DNA that codes for a deiodinase with functional characteristics virtually identical to those of the mammalian and amphibian type II deiodinase. Sequence analysis demonstrates a high degree of homology at both the nucleotide and predicted amino acid levels between the Fundulus clone and these previously characterized type II enzymes, including the presence of an in-frame TGA codon that codes for selenocysteine. These findings demonstrate that the deiodinase family of selenoproteins has been highly conserved during vertebrate evolution and underscores their importance in the regulation of thyroid hormone action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.