Abstract

DEAD box proteins are putative RNA unwinding proteins found in organisms ranging from mammals to bacteria. While some DEAD box genes expressed in higher eukaryotes are ubiquitous, others have distribution profiles that suggest a cell-, tissue-, or developmental-specific role. The DEAD box gene, DDX1, was identified by differential screening of a subtracted retinoblastoma cDNA library. A limited survey of human fetal tissues indicated that DDX1 mRNA has a widespread distribution but is not uniformly expressed in all tissues. To further document the spatial and temporal distribution of DDX1 during embryonic development, we cloned the chicken DDX1 cDNA. The predicted amino acid sequence of chicken DDX1 was 93% identical to that of human DDX1. All DEAD box motifs, as well as a SPRY domain, were present in chicken DDX1. Northern and Western blot analyses showed highest levels of DDX1 at early stages of development. Tissue maturation was generally accompanied by a decrease in expression, although DDX1 levels remained elevated in late embryonic retina and brain. In situ hybridization of retinal tissue sections revealed widespread distribution of DDX1 mRNA at early developmental stages with preferential expression in amacrine and ganglion cells of the differentiated tissue. Preferential expression of DDX1 was also observed in specific areas of the brain in older embryos, such as the external granule layer of the cerebellum. These results suggest a specific role for DDX1 in subsets of differentiated cells as well as a more general role in undifferentiated cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call