Abstract

Lysozymes have important roles in innate immune system. Here, a c-type and a g-type lysozyme were identified from yellow catfish (Pelteobagrus fulvidraco). The deduced amino acid sequences of both lysozymes were conserved in catalytic sites and structural features as compared to their counterparts from other species. It was interesting that the g-type lysozyme possessed a signal peptide. The c-type and g-type lysozymes had the highest identity 89.4 and 76.2 % with that from channel catfish respectively. Phylogenetic analysis showed that the two lysozymes had a closely relationship with that from channel catfish and Astyanax mexicanus. Lysozymes from one order could form more than one clade in the phylogenetic tree, which indicated the gene duplications in evolution. Expression analysis with real time quantitative PCR revealed that the two lysozyme genes were constitutively expressed in all the tested tissues. The highest expression of c-type lysozyme was observed in liver, followed by spleen, head kidney, and trunk kidney, while the g-type lysozyme had highest expression in intestine, followed by spleen, head kidney, and trunk kidney. The mRNA levels of both genes were all up-regulated after challenging with Aeromonas hydrophila. However, there were differences in tissues and time points when the mRNA levels reached its peak between the two lysozymes. It indicated the diversity in regulation mechanisms and detailed functions among lysozymes. Taking together, these results will benefit the understanding of yellow catfish lysozymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.