Abstract

In the present study, a non-TIR-NBS-LRR type disease-related gene was cloned by rapid amplification of cDNA ends (RACE) using the high-resistant sugarcane variety NCo376. This gene was termed as SNLR, with the GenBank accession No. of EF155648. The full-length cDNA sequence of SNLR is 2 985 bp, including an open reading frame (ORF) of 2 661 bp and the typical 29 bp poly-A. The SNLR gene contained all the four typical conserved motifs of the NBS: P-loop (GMGGVGGKTT), Kinase-2 (LIVLDD), Kinase3a (GSR/KILVIIR) and hydrophobic region (GLPLAL), plus six putative LRR regions. It can be deduced from the hydrophobic character, secondary structure and 3D model analysis of the corresponding coding protein that the SNLR protein was alkalescent, with pI of 7.76 and without any obvious hydrophobic domain; coil and helices were the framework of secondary structure; no transmembrane region was found in its protein 3D model. The gene expression profile under the treat- ment of U. scitaminea, SA and H2O2 were investigated by Real-time qPCR. The results showed that expression of sugarcane SNLR gene was influenced by the fungus, SA and H2O2, with the expression patterns of "down-up", "down in the whole process" and "up-down", respectively. It was inferred that expression of SNLR gene occurs both via an H2O2- and SA-dependent pathway. At the same time, SNLR gene was found to be expressed highly in leaves, mildly in stalks and slightly in roots, which indicated its relation to resistance in this aspect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.