Abstract
The regulation of feeding is a complex process that involves coordination between various signals. Feeding hormones can be described as orexigenic (stimulate food intake, e.g. orexin and neuropeptide Y – NPY) or anorexigenic (inhibit food intake, e.g. cocaine and amphetamine regulated transcript – CART). Reproduction and energy homeostasis are closely linked, as factors that affect appetite have also been shown to influence reproductive hormones and behaviors. Gonadotropin-releasing hormone (GnRH) is one of the most influential factors controlling reproduction. Although our understanding of the endocrine regulation of feeding and reproduction in fish is progressing, many gaps still remain, particularly in catfish. Glass catfish (Kryptopterus vitreolus) are freshwater fish known for their natural transparency. In this study, we isolated cDNA encoding reproductive hormones (GnRH1, GnRH2) and appetite regulators (orexin, NPY, and CART) from glass catfish and examined their distribution in various tissues. All peptides had wide distributions across various brain and peripheral tissues, except CART, which was only present in brain. In order to assess whether limited energy supply affects these peptides, we examined the effects of fasting on their brain mRNA expression levels. Fasting increased the expression of both the orexigenic (i.e. orexin and NPY) and anorexigenic (i.e. CART) hormones, and decreased expression levels of GnRH1, but did not affect GnRH2. Overall, our results suggest that fasting affects the expression of peptides involved in both feeding and reproduction, and provides new insights on the endocrine mechanisms that regulate feeding and reproduction in catfish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.