Abstract

The cloning of quantum variables with continuous spectra is investigated. We define a Gaussian 1-to-2 cloning machine that copies equally well two conjugate variables such as position and momentum or the two quadrature components of a light mode. The resulting cloning fidelity for coherent states, namely F = 2/3, is shown to be optimal. An asymmetric version of this Gaussian cloner is then used to assess the security of a continuous-variable quantum key distribution scheme that allows two remote parties to share a Gaussian key. The information versus disturbance tradeoff underlying this continuous quantum cryptographic scheme is then analyzed for the optimal individual attack. Methods to convert the resulting Gaussian keys into secret key bits are also studied. Finally, the extension of the Gaussian cloner to optimal N-to-M continuous cloners is discussed, and it is shown how to implement these cloners for light modes using a phase-insensitive optical amplifier and beam splitters. In addition, a phase-conjugate input cloner is defined, yielding M clones and M' anticlones from N replicas of a coherent state and N' replicas of its phase-conjugate (with M' - M = N' - N). This novel kind of cloners is shown to outperform the standard N-to-M cloners in some cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.