Abstract

Uracil arises in DNA from spontaneous deamination of cytosine and through incorporation of dUMP by DNA polymerase during DNA replication. Excision of uracil by the action of uracil-DNA glycosylase (Ung) initiates the base excision repair pathway to counter the promutagenic base modification. In this study, we cloned a cDNA-encoding Caenorhabditis elegans homologue (CeUng-1) of Escherichia coli Ung. There was 49% identity in amino acid sequence between E.coli Ung and CeUng-1. Purified CeUng-1 removed uracil from both U:G and U:A base pairs in DNA. It also removed uracil from single-stranded oligonucleotide substrate less efficiently than double-stranded oligonucleotide. The CeUng-1 activity was inhibited by Bacillus subtilis Ung inhibitor, indicating that CeUng-1 is a member of the family-1 Ung group. The mutation in the ung-1 gene did not affect development, fertility and lifespan in C.elegans, suggesting the existence of backup enzyme. However, we could not detect residual uracil excision activity in the extract derived from the ung-1 mutant. The present experiments also showed that the ung-1 mutant of C.elegans was more resistant to NaHSO(3)-inducing cytosine deamination than wild-type strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.