Abstract
Recent studies reveal important and distinct roles for cardiac alpha(1a) adrenergic receptors (alpha(1a)ARs). Surprisingly, given their importance in myocardial ischemia/reperfusion, hypoxia, and hypertrophy as well as frequent use of rat cardiomyocyte model systems, the rat alpha(1a)AR gene promoter has never been characterized. Therefore, we isolated 3.9 kb of rat alpha(1a)AR 5'-untranslated region and 5'-regulatory sequences and identified multiple transcription initiation sites. One proximal (P1) and several clustered upstream distal promoters (P2, P3, and P4) were delineated. Sequences surrounding both proximal and distal promoters lack typical TATA or CCAAT boxes but contain cis-elements for multiple myocardium-relevant nuclear regulators including Sp1, GATA, and CREB, findings consistent with enhanced cardiac basal alpha(1a)AR expression seen in Northern blots and reporter constructs. Promoter analysis using deletion reporter constructs reveals, in addition to a powerful upstream enhancer, a key region (-558/-542) important in regulating all alpha(1a)AR promoters with hypoxic stress. Gel shift analysis of this 14-bp region confirms a hypoxia-induced shift independent of direct hypoxia-inducible factor binding. Mutational analysis of this sequence identifies a novel 9-bp hypoxia response element, the loss of which severely attenuates hypoxia-mediated repression of alpha(1a)AR transcription. These findings for the alpha(1a) gene should facilitate elucidation of alpha(1)AR-mediated mechanisms involved in distinct myocardial pathologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.