Abstract

Trypanosoma cruzi is the etiological agent of Chagas' disease, a chronic illness characterized by progressive cardiomyopathy and/or denervation of the digestive tract. The parasite surface is covered with glycoconjugates, such as mucin-type glycoproteins and glycoinositolphospholipids (GIPLs), whose glycans are rich in galactopyranose (Galp) and/or galactofuranose (Galf) residues. These molecules have been implicated in attachment of the parasite to and invasion of mammalian cells and in modulation of the host immune responses during infection. In T. cruzi, galactose (Gal) biosynthesis depends on the conversion of uridine diphosphate (UDP)-glucose (UDP-Glc) into UDP-Gal by an NAD-dependent reduction catalyzed by UDP-Gal 4-epimerase. Phosphoglucomutase (PGM) is a key enzyme in this metabolic pathway catalyzing the interconversion of Glc-6-phosphate (Glc-6-P) and Glc-1-P which is then converted into UDP-Glc. We here report the cloning of T. cruzi PGM, encoding T. cruzi PGM, and the heterologous expression of a functional enzyme in Saccharomyces cerevisiae. T. cruzi PGM is a single copy gene encoding a predicted protein sharing 61% amino acid identity with Leishmania major PGM and 43% with the yeast enzyme. The 59-trans-splicing site of PGM RNA was mapped to a region located at 18 base pairs upstream of the start codon. Expression of T. cruzi PGM in a S. cerevisiae null mutant-lacking genes encoding both isoforms of PGM (pgm1Delta/pgm2Delta) rescued the lethal phenotype induced upon cell growth on Gal as sole carbon source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call