Abstract
Pancreatic lipase hydrolyzes dietary triglycerides to monoglycerides and fatty acids. In the presence of bile salts, the activity of pancreatic lipase is markedly decreased. The activity can be restored by the addition of colipase, a low molecular weight protein secreted by the pancreas. The action of pancreatic lipase in the gut lumen is dependent upon its interaction with colipase. As a first step in elucidating the molecular events governing the interaction of lipase and colipase with each other and with fatty acids, a cDNA encoding human colipase was isolated from a lambda gt11 cDNA library with a rabbit polyclonal anti-human colipase antibody. The full-length 525 bp cDNA contained an open reading frame encoding 112 amino acids, including a 17 amino acid signal peptide. The predicted protein sequence contains 100% of the published protein sequence for human colipase determined by chemical methods, but predicts the presence of five additional NH2-terminal amino acids and four additional COOH-terminal amino acids. Comparison of the predicted protein sequence with the known sequences of colipase from other species reveals regions of extensive identity. In vitro translation of mRNA transcribed from the cDNA gave a protein of the expected molecular size that was processed by pancreatic microsomal membranes. Sequence analysis of the in vitro translation product after processing demonstrated signal peptide cleavage and the presence of a human procolipase, as exists in the pig and horse colipases. DNA blot analysis was consistent with the presence of a single gene for colipase. RNA blot analysis demonstrated tissue-specific expression of colipase mRNA in the pancreas. Thus, we report, for the first time, a cDNA for colipase.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.