Abstract

The aroA gene from Mycobacterium tuberculosis has been cloned by complementation of an aroA mutant of Escherichia coli after lysogenization with a recombinant DNA library in the lambda gt11 vector. Detailed characterization of the M. tuberculosis aroA gene by nucleotide sequencing and by immunochemical analysis of the expressed product indicates that it encodes a 5-enolpyruvylshikimate-3-phosphate synthase that is structurally related to analogous enzymes from other bacterial, fungal, and plant sources. The potential use of the cloned gene in construction of genetically defined mutant strains of M. tuberculosis by gene replacement is proposed as a novel approach to the rational attenuation of mycobacterial pathogens and the possible development of new antimycobacterial vaccines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.