Abstract

Epidermal keratinocytes are the primary target of the midrange ultraviolet part (UVB, 280–320 nm) of terrestrial sunlight. Analysis of the resulting UV response at the transcriptional level by differential display PCR identified a formerly unrecognized large group of repressed genes. Among those UV-repressible genes, a novel serine proteinase inhibitor (serpin) termed hurpin (HaCaT UV-repressible serpin) has been identified. The isolated full-length cDNAs harbour a 1176 bp open reading frame encoding a potential protein with 391 amino acid residues and a predicted molecular mass of ∼44 kDa. The novel serpin has nearly 59% amino acid identity with the squamous cell carcinoma antigen 1 (SCCA1) and squamous cell carcinoma antigen 2 (SCCA2). In addition, it displays all of the structural features unique to the ovalbumin family of serpins (ov-serpins). The amino acid sequence of the hinge region in the reactive site loop suggests that hurpin has the potential for protease inhibition. The putative reactive center P 1-P 1′ residues were identified as Thr356-Ser357 by alignment with other ov-serpins. The physiological target protease is unknown and the in vitro translated hurpin does not form SDS-stable complexes with a variety of known serine proteases. Expression of hurpin is restricted to epidermal cells where two distinct transcripts of 3.0 and 3.4 kb are detectable. Furthermore, expression of hurpin appears to be related to the activation or proliferation state of keratinocytes, since hurpin transcripts are more abundant in immortalized keratinocytes (HaCaT) and in cultured normal human keratinocytes, compared to the expression in normal skin. Moreover, in psoriasis, a skin disease characterized by hyperproliferation of keratinocytes and responsive to therapeutic UV irradiation, overexpression of hurpin is noted in psoriatic skin lesions compared to non-lesional skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call