Abstract

Heat shock transcription factors (Hsfs) are the terminal components of the signal transduction chain mediating the activation of genes responsive to both heat stress and a large number of chemical stressors. This paper aims to clone Hsf from lily and characterize its function by analyses of mRNA expression, transactivation activity and thermotolerance of transgenic Arabidopsis. In this study, the gene encoding HsfA2 with 1,053 bp open reading frame (ORF) was cloned by rapid amplification of cDNA ends (RACE) technique from Lilium longiflorum 'White heaven'. Multiple alignment and phylogenetic analyses showed that the deduced protein was a novel member of the Hsf class A2. Expression analyses by RT-PCR indicated that LlHsfA2 expression was induced by heat shock and H(2)O(2) treatment, but not by NaCl. It was also found that the expression of LlHsfA2 correlated with thermotolerance in Lilium longiflorum 'White heaven' and Oriental hybrid 'Acapulco' under heat stress. Furthermore, yeast one-hybrid assay showed that LlHsfA2 had transactivation activity. In addition, overexpression of LlHsfA2 activated the downstream genes including Hsp101, Hsp70, Hsp25.3 and Apx2 and enhanced the thermotolerance of transgenic Arabidopsis plants. Taken together, our data suggest that LlHsfA2 is a novel and functional HsfA2, involved in heat signaling pathway in lily and useful for improvement of thermotolerance in transgenic plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call