Abstract

Pyruvate carboxylase is a major enzyme for biosynthesis of organic acids like; citric acid, fumeric acid, and L-malic acid. These organic acids play very important role for biological remediation of heavy metals. In this study, gene walking method was used to clone and characterize pyruvate carboxylase gene (F3PYC) from heavy metal resistant indigenous fungal isolate Aspergillus flavus (F3). 3579bp of an open reading frame which encodes 1193 amino acid protein (isoelectric point: 6.10) with a calculated molecular weight of 131.2008kDa was characterized. Deduced protein showed 90-95% similarity to those deduced from PYC gene from different fungal strains including; Aspergillus parasiticus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus clavatus, and Aspergillus niger. Protein generated from the PYC gene was a homotetramer (α4) and having four potential N-linked glycosylation sites and had no signal peptide. Amongst most possible N-glycosylation sites were -N-S-S-I- at 36 amino acid, -N-G-T-V- at 237 amino acid, N-G-S-S- at 517 amino acid, and N-T-S-R- at 1111 amino acid, with several functions have been proposed for the carbohydrate moiety such as thermal stability, pH, and temperature optima for activity and stabilization of the three-dimensional structure. Hence, cloning of F3PYC gene from A. flavus has important biotechnological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call