Abstract

Characterization of genes related to sweetpotato to viral disease resistance is critical for understanding plant-pathogen interactions, especially with feathery mottle virus infection. For example, genes encoding eukaryotic translation initiation factor (eIF)4E, its isoforms, eIF(iso)4E, and the cap-binding protein (CBP) in plants, have been implicated in viral infections aside from their importance in protein synthesis. Full-length cDNA encoding these putative eIF targets from susceptible/resistant and unknown hexaploid sweetpotato (Ipomoea batatas L. Lam) were amplified based on primers designed from the diploid wild-type relative Ipomoea trifida consensus sequences, and designated IbeIF4E, IbeIF(iso)4E and IbCBP. Comparative analyses following direct-sequencing of PCR-amplified cDNAs versus the cloned cDNA sequences identified multiple homeoalleles: one to four IbeIF4E, two to three IbeIF(iso)4E, and two IbCBP within all cultivars tested. Open reading frames were in the length of 696 bp IbeIF4E, 606 bp IbeIF(iso)4E, and 675 bp IbCBP. The encoded single polypeptide lengths were 232, 202, and 225 amino acids for IbeIF4E, IbeIF(iso)4E, and IbCBP, with a calculated protein molecular mass of 26 kDa, 22.8 kDa, and 25.8 kDa, while their theoretical isoelectric points were 5.1, 5.57, and 6.6, respectively. Although the homeoalleles had similar sequence lengths, single nucleotide polymorphisms and multi-allelic variations were detected within the coding sequences. The multi-sequence alignment performed revealed a 66.9% - 96.7% sequence similarity between the predicted amino acid sequences obtained from the homeoalleles and closely related species. Furthermore, phylogenetic analysis revealed ancestral relationships between the eIF4E homeoalleles and other species. The outcome herein on the eIF4E superfamily and its correlation in sequence variations suggest opportunities to decipher the role of eIF4E in hexaploid sweetpotato feathery mottle virus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call