Abstract

We report the first identification, gene cloning, recombinant expression and biochemical characterization of an angiotensin converting enzyme (ACE) related dipeptidylcarboxypeptidase (DCP) in a protozoan parasite. The mammalian counterpart of this enzyme, peptidyl dipeptidase A (a carboxyl dipeptidase) also known as ACE leads to the cleavage of angiotensin I to produce a potent vasopressor. The catalytic enzyme activity of its Escherichia coli DCP counter part can be inhibited by the antihypertensive drug captopril, suggesting that this class of enzymes constitutes a novel target for drugs and vaccines. By utilizing a DNA microarray expression profiling approach, we identified a gene encoding a DCP enzyme for the kinetoplast protozoan Leishmania donovani (LdDCP) that was differentially expressed in promastigote and amastigote stages of the parasite life cycle. Both RNA and protein levels of LdDCP are higher in axenic amastigotes compared to promastigotes. Immuno-fluorescence analysis revealed the cytosolic expression of the protein. Primary structure analysis of LdDCP revealed the presence of an active Zn binding site. When expressed in E. coli, the recombinant enzyme showed carboxy-dipeptidase activity with synthetic substrates. Replacement of two histidine and one glutamic acid at positions 466, 470 and 467, respectively, with alanine residues in its active site resulted in loss of enzyme activity. Captopril, an ACE specific inhibitor was able both to reduce significantly LdDCP enzyme activity and to inhibit promastigote growth. Both its cytosolic location and close homology to DCPs from bacterial species suggests a role in parasite nutrition. Further, identification of LdDCP now provides an opportunity to investigate Leishmania peptidases for their potential as drug and vaccine targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.