Abstract

A novel amidase gene, designated pamh, was cloned from Paracoccus sp. M-1. Site-directed mutagenesis and bioinformatic analysis showed that the PamH protein belonged to the amidase signature enzyme family. PamH was expressed in Escherichia coli, purified, and characterized. The molecular mass of PamH was determined to be 52kDa with an isoelectric point of 5.13. PamH displayed its highest enzymatic activity at 45°C and at pH8.0 and was stable within a pH range of 5.0-10.0. The PamH enzyme exhibited amidase activity, aryl acylamidase activity, and acyl transferase activity, allowing it to function across a very broad substrate spectrum. PamH was highly active on aromatic and short-chain aliphatic amides (benzamide and propionamide), moderately active on amino acid amides, and possessed weak urease activity. Of the anilides examined, only propanil was a good substrate for PamH. For propanil, the k (cat) and K (m) were 2.8s(-1) and 158μM, respectively, and the catalytic efficiency value (k (cat)/K (m)) was 0.018μM(-1)s(-1). In addition, PamH was able to catalyze the acyl transfer reaction to hydroxylamine for both amide and anilide substrates, including acetamide, propanil, and 4-nitroacetanilide; the highest reaction rate was shown with isobutyramide. These characteristics make PamH an excellent candidate for environmental remediation and an important enzyme for the biosynthesis of novel amides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.