Abstract

Lactate are proved to be attractive electron donor for the production of n-caproic acid (CA) that is a high value-added fuel precursor and chemical feedstock, but little is known about molecular mechanism of lactate transformation. In the present study, the gene for L-lactate dehydrogenase (LDH, EC.1.1.1.27) from a Ruminococcaceae strain CPB6 was cloned and expressed in Escherichia coli BL21 (DE3) with plasmid pET28a. The recombinant LDH exhibited molecular weight of 36-38kDa in SDS-PAGE. The purified LDH was found to have the maximal oxidation activity of 29.6 U/mg from lactate to pyruvate at pH 6.5, and the maximal reduction activity of 10.4 U/mg from pyruvate to lactate at pH 8.5, respectively. Strikingly, its oxidative activity predominates over reductive activity, leading to a 17-fold increase for the utilization of lactate in E. coli/pET28a-LDH than E. coli/pET28a. The CPB6 LDH gene encodes a 315 amino acid protein sharing 42.19% similarity with Clostridium beijerinckii LDH, and lower similarity with LDHs of other organisms. Significant difference were observed between the CPB6 LDH and C. beijerinckii and C. acetobutylicum LDH in the predicted tertiary structure and active center. Further, X-ray crystal structure analysis need to be performed to verify the specific active center of the CPB6 LDH and its role in the conversion of lactate into CA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.