Abstract

Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.

Highlights

  • IntroductionThe product of photosynthesis is transported from source to sink organs in the form of sucrose [1]

  • In most plant species, the product of photosynthesis is transported from source to sink organs in the form of sucrose [1]

  • The cDNA and the deduced amino acid sequences of the MeVINVs described in this study were deposited in GenBank under the following accession numbers: MeVINV1 (JX291158), MeVINV2 (JQ792174), MeVINV3 (JQ792173) (Table 1)

Read more

Summary

Introduction

The product of photosynthesis is transported from source to sink organs in the form of sucrose [1]. The utilization of sucrose for various carbohydrate metabolic pathways depends on its cleavage into hexoses, and in higher plants either sucrose synthase (EC 2.4.1.13) or invertase (EC 3.2.1.26) catalyze this process [2]. Sucrose synthase reversibly catalyzes the conversion of sucrose into nucleoside diphosphate glucose and fructose [3]. Sucrose and its decomposition products play a key role in plant growth and development, carbohydrate storage, sugar signal transduction, biotic and abiotic stress responses, and gene regulation [5,6]. Invertase presents a group of isozymes with different biochemical properties [7]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call