Abstract

Antibiotic resistance is increasing rapidly in pathogenic organisms, creating more complications for treatment of diseases. Rocky Mountain spotted fever (RMSF) is a neglected tropical disease in humans caused by Rickettsia rickettsii for which no effective therapeutic is available. Subtractive genomics methods facilitate the characterization of non-homologous essential proteins that could be targeted for the discovery of potential therapeutic compounds against R. rickettsii to combat RMSF. Present study followed an in-silico based methodology, involving scanning and filtering the complete proteome of Rickettsia rickettsii by using several prioritization parameters in the search of potential candidates for drug development. Further the putative targets were subjected to series of molecular dockings with ligands obtained from PDB ligand database to identify suitable potential inhibitors. The comparative genomic analysis revealed 606 non-homologous proteins and 233 essential non-homologous proteins of R. rickettsii. The metabolic pathway analysis predicted 120 proteins as putative drug targets, out of which 56 proteins were found to be associated with metabolic pathways unique to the bacteria and further subcellular localization analysis revealed that 9 proteins as potential drug targets which are secretion proteins, involved in peptidoglycan biosynthesis, folate biosynthesis and bacterial secretion system. As secretion proteins are more feasible as vaccine candidates, we have selected a most potential target i.e. tolC, an outer membrane efflux protein that belongs to type I secretion system and has major role in pathogen survival as well as MDR persistence. So for case study, we have modelled the three dimensional structure of tolC (tunnel protein). The model was further subjected to virtual screening and in-silico docking. The study identified three potential inhibitors having PDB Id 19V, 6Q8 and 39H. Further we have suggested that the above study would be most important while considering the selection of candidate targets and drug or vaccine designing against R. rickettsii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.