Abstract

The narrow leaf and shortened stem phenotypes of the maize mutant narrow sheath (ns) are postulated to result from the lack of founder cell initialization in a region of the meristem that gives rise to leaf and stem margins. To test this model, a lineage map of the maize meristem is presented which compares the development of leaf margins in the narrow leaf mutant, narrow sheath (ns), and wild-type sibling plants. X-irradiation of mature seeds produced aneuploid albino sectors in wild-type and ns mutant plants. Of particular interest are sectors occurring in more than one leaf, which reflect a meristematic albino cell lineage. Analyses of these sectors indicated that: (1) a region of the ns meristem does not contribute to the founder cell population of the incipient leaf; (2) the margins of ns mutant leaves are derived from a lateral region of the meristem different from those in wild-type siblings; (3) founder cells in wild-type, juvenile-staged vegetative meristems encircle the meristem to a greater extent than do founder cells in adult-staged meristems; and (4) meristematic leaf founder cells may be subdivided into specific lateral domains, such that the position of a sector on the meristem correlates with a particular cell lineage. These data support our model for nsgene function in a specific domain of the meristem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call