Abstract

ObjectiveTraumatic brain injury (TBI) is a major risk factor for disabilities globally with no effective treatment thus far. Recently, homogenous population of clonal mesenchymal stem cells (cMSC) and their derived extracellular vesicles (cMSC-EVs) have been proposed as a promising TBI treatment strategy. We herein investigated possible therapeutic effect of cMSC-EVs in TBI treatment and the underlying mechanisms considering cis p-tau as an early hallmark of TBI. MethodsWe examined the EVs morphology, size distribution, marker expression, and uptake. Moreover, the EVs neuroprotective effects were studied in both in-vitro and in-vivo model. We also examined the anti-cis p-tau antibody-loading characteristics of the EVs. We treated TBI mouse model with EVs; prepared from cMSC-conditioned media. TBI mice were given cMSC-EVs intravenously and their cognitive functions were analyzed two months of the treatment. We employed immunoblot analysis to study the underlying molecular mechanisms. ResultsWe observed a profound cMSC-EVs uptake by primary cultured neurons. We found a remarkable neuroprotective effect of cMSC-EVs upon nutritional deprivation stress. Furthermore, cMSC-EVs were effectively loaded with an anti-cis p-tau antibody. There was a significant improvement in cognitive function in TBI animal models treated with cMSC-EVs compared to the saline-treated group. There was a decreased cis p-tau and cleaved caspase3 as well as increased p-PI3K in all treated animals. ConclusionsThe results revealed that cMSC-EVs efficiently improved animal behaviors after TBI by reducing cistauosis and apoptosis. Moreover, the EVs can be employed as an effective strategy for antibody delivery during passive immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.