Abstract

Source-sink relationships and branching architecture are two determinants of clonal integration, but their joint effects on resource translocation are still unclear. Our aim was to elucidate the pattern and mechanism of resource translocation controlled by source-sink relationships and branching architecture. We conducted a 15N-tracing experiment in six plots of a running bamboo, Phyllostachys glauca, in the field. The immature ramets and mature ramets were defined as strong sinks and weak sinks according to their sink strength, and the territories of integrated ramets were classified into zero-barrier zones and barrier zones considering rhizome branching architecture. The translocation of 15N for all ramets showed a logarithmic pattern over time with a peak around the fifth week after labelling. Spatially, 15N was exported first to ramets in zero-barrier zones within three days and then to ramets in barrier zones within three weeks. Ramets in zero-barrier zones had a significantly higher translocation intensity (1653.2‰), speed (1.95 m/day) and amount (39.9 mg kg−1), and a shorter translocation time (three days) than ramets in barrier zones (61.3‰, 0.86 m/day, 2.3 mg kg−1 and 1.4 weeks, respectively). In zero-barrier zones, translocation intensity and amount in immature ramets were 6.7 and 3.4 times greater than those in mature ramets, respectively. In barrier zones, translocation traits (intensity, speed, time, amount) of immature ramets and mature ramets were similar. In addition, distance did not affect nitrogen translocation pattern or the effects of rhizome branching architecture and source-sink relationships on nitrogen translocation. The nitrogen translocation was mainly confined in zero-barrier zones by rhizome branching architecture, where source-sink relationships worked. In the clonal integration of P. glauca, source-sink relationships are the driving forces, while rhizome branching architecture acts as a flow restrictor. The results provide implications for spreading control and fertilizer applications on running bamboos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.