Abstract

Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with an increased risk of cardiovascular (CV) disease in the general population. Currently, it is unclear whether this association is observed in large clinical trial cohorts with a high burden of existing CV disease or whether CV therapies can mitigate CHIP-associated CV risk. To address these questions, we studied 63,700 patients from five randomized trials that tested established therapies for CV disease, including treatments targeting the proteins PCSK9, SGLT2, P2Y12 and FXa. During a median follow-up of 2.5 years, 7,453 patients had at least one CV event (CV death, myocardial infarction (MI), ischemic stroke or coronary revascularization). The adjusted hazard ratio (aHR) for CV events for CHIP+ patients was 1.07 (95% CI: 0.99-1.16, P = 0.08), with consistent risk estimates across each component of CV risk. Significant heterogeneity in the risk of MI was observed, such that CHIP+ patients had a 30% increased risk of first MI (aHR = 1.31 (1.05-1.64), P = 0.02) but no increased risk of recurrent MI (aHR = 0.94 (0.79-1.13), Pint = 0.008), as compared to CHIP- patients. Moreover, no significant heterogeneity in treatment effect between individuals with and without CHIP was observed for any of the therapies studied in the five trials. These results indicate that in clinical trial populations, CHIP is associated with incident but not recurrent coronary events and that the presence of CHIP does not appear to identify patients who will derive greater benefit from commonly used CV therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call