Abstract

The plasticity in clonal architecture may enable plants to effectively respond to environmental constraints and to enhance species ecological niche breadth but its role in plant tolerance to water flow is poorly documented. The present study was carried out to determine whether the clonal architecture varies with respect to water flow in 10 species of the genus Potamogeton colonizing habitats differing by flow conditions. For these 10 species, the traits describing clonal architecture were measured on individuals sampled in natural sites and plasticity in clonal architecture was examined in a common garden growth experiment. The clonal growth architecture did not vary significantly in the species which inhabit either standing (P. lucens, P. natans, and P. pusillus) or running water (P. amblyphyllus and P. berchtoldii). However, the species inhabiting both standing as well as running waters (P. crispus, P. nodosus, P. pectina- tus, P. perfoliatus, and P. wrightii) showed consider- able and significant variation in clonal growth architecture across these habitats. Transplantation experiment revealed that clonal architecture observed between the plants under different conditions is plastic and not due to genetic differentiation. The present study demonstrated that plasticity in the clonal architecture may enable these species to inhabit stressful conditions of flowing water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.