Abstract
Shape segmentation from point cloud data is a core step of the digital twinning process for industrial facilities. However, it is also a very labor intensive step, which counteracts the perceived value of the resulting model. The state-of-the-art method for automating cylinder detection can detect cylinders with 62% precision and 70% recall, while other shapes must then be segmented manually and shape segmentation is not achieved. This performance is promising, but it is far from drastically eliminating the manual labor cost. We argue that the use of class segmentation deep learning algorithms has the theoretical potential to perform better in terms of per point accuracy and less manual segmentation time needed. However, such algorithms could not be used so far due to the lack of a pre-trained dataset of laser scanned industrial shapes as well as the lack of appropriate geometric features in order to learn these shapes. In this paper, we tackle both problems in three steps. First, we parse the industrial point cloud through a novel class segmentation solution (CLOI-NET) that consists of an optimized PointNET++ based deep learning network and post-processing algorithms that enforce stronger contextual relationships per point. We then allow the user to choose the optimal manual annotation of a test facility by means of active learning to further improve the results. We achieve the first step by clustering points in meaningful spatial 3D windows based on their location. Then, we apply a class segmentation deep network, and output a probability distribution of all label categories per point and improve the predicted labels by enforcing post-processing rules. We finally optimize the results by finding the optimal amount of data to be used for training experiments. We validate our method on the largest richly annotated dataset of the most important to model industrial shapes (CLOI) and yield 82% average accuracy per point, 95.6% average AUC among all classes and estimated 70% labor hour savings in class segmentation. This proves that it is the first to automatically segment industrial point cloud shapes with no prior knowledge at commercially viable performance and is the foundation for efficient industrial shape modeling in cluttered point clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.