Abstract

The clogging transition of granular flow through a disordered porous structure is investigated by three-dimensional discrete element simulations. Results reveal the existence of an intermittent flow state, which has been already observed for active particles or agitated grains, but is absent in single-pore flows of passive particles. Interestingly, the analysis of the intermittent dynamics shows similar attributes to the bottleneck flow of active grains, i.e., exponential distribution of flowing intervals and power-law tails for the clogging times. Precisely, based on the exponent of the power-law tail, a clogging phase diagram for porous structures is proposed in the plane of the scaled pore size D/dp and the friction coefficient μs. Then, we demonstrate that the intermittency arises from a delay in the dissipation of particles' kinetic energy after clogging imposed by the porous structure. Finally, the maximum achievable particle flow rate driven by gravity is predicted from the Froude number Frm, which linearly scales with the pore size and the friction coefficient. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.