Abstract

Due to their high permeability and high strength, pervious concrete piles (PCPs) can improve ground bearing capacity. However, clogging of pervious concrete in practice is a potential disadvantage. To investigate the clogging mechanism of PCPs due to sand piping, a series of laboratory simulation tests is conducted on a developed hydraulic conductivity test system. This testing demonstrates the effects of pervious concrete porosity, grading of fine movable particles, mix ratio of skeleton particles to movable particles, relative density of soil, and distance between PCPs on PCP clogging. The experimental test results show that the hydraulic conductivity of PCP decreases for approximately 70 min and then becomes relatively stable. In addition, it is observed that PCP clogging rarely occurs in cases of low pervious concrete porosity, small movable sand particle size, high sand relative density, and large pile distance. The results also show that measurement of electrical conductivity can be an alternative method of hydraulic conductivity measurement. Based on the test results, preliminary clogging models are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.