Abstract

An optical atomic clock with 171Yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6±3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb—Dicke regime. Furthermore, these cold 171Yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0–3P0 clock-transition spectrum of these 171Yb atoms is obtained by measuring the dependence of the population of the ground-state 1S0 upon the clock-laser detuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.