Abstract

A high-pressure vane (HPV) equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side, while the leading edge (LE) is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-averaged Navier–Stokes simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and HPVs are then investigated, considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first in which hot spot and swirl core are aligned with passage; and the second in which they are aligned with the LE. Comparisons between metal temperature distributions obtained from conjugate heat transfer (CHT) simulations are performed, evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The LE aligned configuration is determined to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage-aligned case. A strong sensitivity to both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.