Abstract
Optical switching has attracted significant attention in recent research on data center networks (DCNs) as it is a promising viable route for the further scaling of hyper scale data centers, so that DCNs can keep pace with the rapid growth of machine-to-machine traffic. It has been shown that optical clock synchronization enables sub-nanosecond clock and data recovery time and is crucial to high performance optically switched DCN. Moreover, the interconnect data rate is expected to increase from the current 100 Gb/s per fiber to scale to 800 Gb/s and beyond, requiring high baud rate signaling at >50 GBd. Thus, future optically switched DCN should support >50 GBd data transmission with optical clock synchronization. Here, we demonstrate the clock-synchronized transmission of 128-byte optical packets at 51.2 GBd and study the impact of reference clock phase noise on system performance, focusing on the tolerance to the clock phase misalignment that affects the system scalability and reliability. By comparing the tolerable sampling clock phase offsets using different reference clocks, we show that a clock phase offset window of about 8 ps could be achieved with a <0.2ps source clock. Furthermore, we model and numerically study the de-correlation of clock phase noise. This allows the total jitter to be estimated, and thereby, the estimation of the transmission performance for future generations of high baud rate, clock synchronized DC interconnects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.