Abstract
The generation of a fault-tolerant global time base with known accuracy of synchronization is one of the important operating system functions in a distributed real-time system. Depending on the types and number of tolerated faults, this paper presents upper bounds on the achievable synchronization accuracy for external and internal synchronization in a distributed real-time system. The concept of continuous versus instantaneous synchronization is introduced in order to generate a uniform common time base for local, global, and external time measurements. In the last section, the functions of a VLSI clock synchronization unit, which improves the synchronization accuracy and reduces the CPU load, are described. With this unit, the CPU overhead and the network traffic for clock synchronization in state-of-the-art distributed real-time systems can be reduced to less than 1 percent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.