Abstract

Wireless sensor networks have become an important and promising research area during the last recent years. Clock synchronization is one of the areas that play a crucial role in the design, implementation, and operation of wireless sensor networks. Under the assumption that there is no clock skew between sensor nodes, the Maximum Likelihood Estimate (MLE) of clock offset was proved by [1] for clock synchronization protocols that assume exponential random delays and a two-way message exchange mechanism such as TPSN (Timing-sync Protocol for Sensor Networks [2]). This MLE is asymptotically unbiased. However, the estimator is biased in the presence of a finite number of samples and much more biased in asymmetric random delay models, where the upstream delay characteristics are different from the downstream delay characteristics, and thus its performance is deteriorated. This paper proposes clock offset estimators based on the bootstrap bias correction approach, which estimates and corrects the bias of the MLE in the exponential delay model, and hence it results in better performances in mean squared error (MSE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.