Abstract

The $q$-state clock model is a classical spin model that corresponds to the Ising model when $q=2$ and to the $XY$ model when $q\to\infty$. The integer-$q$ clock model has been studied extensively and has been shown to have a single phase transition when $q=2$,$3$,$4$ and two phase transitions when $q>4$.We define an extended $q$-state clock model that reduces to the ordinary $q$-state clock model when $q$ is an integer and otherwise is a continuous interpolation of the clock model to noninteger $q$. We investigate this class of clock models in 2D using Monte Carlo (MC) and tensor renormalization group (TRG) methods, and we find that the model with noninteger $q$ has a crossover and a second-order phase transition. We also define an extended-$O(2)$ model (with a parameter $\gamma$) that reduces to the $XY$ model when $\gamma=0$ and to the extended $q$-state clock model when $\gamma\to\infty$, and we begin to outline the phase diagram of this model. These models with noninteger $q$ serve as a testbed to study symmetry breaking in situations corresponding to quantum simulators where experimental parameters can be tuned continuously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call