Abstract

Accumulated evidence indicates that circadian genes regulate cell damage and senescence in most mammals. Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) regulate longevity in many organisms. However, the specific mechanisms of the relationship between the circadian clock and the two stress processes in organisms are poorly understood. Here, we show that Clock-mediated Pdia3 expression is required to sustain reactive oxidative reagents and ER stress. First, ER stress and ROS are strongly activated in the liver tissue of ClockΔ19 mutant mice, which exhibit a significant aging phenotype. Next, transcription of Pdia3 is mediated by the circadian gene Clock, but this process is affected by the ClockΔ19 mutant due to the low affinity of the E-box motif in the promoter. Finally, ablation of Pdia3 with siRNA causes ER stress with sustained phosphorylation of PERK and eIF1α, resulting in exaggerated up-regulation of UPR target genes and increased apoptosis as well as ROS. Moreover, the combined effects result in an imbalance of cell homeostasis and ultimately lead to cell damage and senescence. Taken together, this study identified the circadian gene Clock as a regulator of ER stress and senescence, which will provide a reference for the clinical prevention of aging.

Highlights

  • Aging can be described at molecular, cellular, and organ levels

  • To study the potential impact of Clock exon 19 deficiency in mice, we investigated whether the main metabolic organ, the liver, was affected in ClockΔ19 mice

  • We found that protein expression of P53, P21 and P16 was significantly higher in ClockΔ19 than WT mice both during the day (ZT0) and night (ZT12) (Figure 1D)

Read more

Summary

Introduction

At the cellular level, aging is accompanied by DNA damage accumulation and loss of genomic integrity [1]. If not fixed, can cause an imbalance of the microenvironment and homeostasis, leading to senescence. Free radicals have been implicated in the mechanism of senescence. The abnormal increase in ROS lead to an increase in oxidative damage caused by free radicals [2]. In addition to oxidative damage, there are many important quality control mechanisms in cells that can determine cell fate in an adaptive or suicidal manner in response to stress, such as DNA repair, cell growth regulation, and endoplasmic reticulum (ER) stress [3]. The destruction of cell quality control can cause a variety of diseases as well as physical disorders

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.