Abstract

Single particles in a yield stress fluid move only when the driving body force exceeds a critical value depending on the yield stress and particle shape. The critical limit is not unique and here we show that for the same critical limit we may have different shaped particles that are cloaked inside the same unyielded envelope. The critical limit (or critical plastic drag coefficient) is related to the unyielded envelope rather than the particle shape. We show how to calculate the unyielded envelope directly. We then use the theory of perfect plasticity to construct an estimate of the critical plastic drag coefficient that appears to coincide closely with that computed from the limiting viscoplastic flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.