Abstract

A cross-sectional study was carried out to determine antimicrobial drug resistance patterns of E. coli O157:H7 isolates and estimate the level of the pathogen. A total of 194 cloacae swab samples were collected randomly in two poultry farms. Standard cultural, biochemical, and serological (latex agglutination) methods were used to isolate E. coli O157:H7. The isolates were subjected to antimicrobial susceptibility testing using disc diffusion method. Out of 194 cloacae samples examined, 13.4% (n = 26) were found to be positive for E. coli O157:H7. The finding indicated differences in E. coli O157:H7 infection among the different risk factors. Chicken from Adele Poultry Farm showed higher E. coli O157:H7 infection (OR = 3.89) than Haramaya University poultry farm and young birds had more infection (OR = 4.62) than adult birds. Of the total 14 antimicrobials included in the panel of study, the susceptibility results were varied with 96.15% and 0% E. coli O157:H7 isolates expressing resistance to erythromycin, clindamycin, spectinomycin, and ciprofloxacin, respectively. Multidrug resistance to more than two antimicrobial agents was detected in 24 (92.30%) of the isolates. The study showed high presence of antimicrobial resistant isolates of E. coli O157:H7. Further study is required to better understand the ecology and evolution of bacterial resistance to antimicrobial agents.

Highlights

  • Poultry is a major fast growing source of food in the world today [1]

  • Based on colonial morphology and biochemical and latex agglutination tests, E. coli O157:H7 were isolated from cloacal swab sample of chickens (Table 2)

  • The results indicated different level of E. coli O157:H7 among the different selected risk factors of examined poultry; Haramaya University

Read more

Summary

Introduction

Poultry is a major fast growing source of food in the world today [1]. It is one of the commodities most commonly associated with food-borne disease outbreaks. E. coli is a commensal bacterium in humans and animals and has a wide range of hosts. It is commonly present in the environment and considered an indicator of fecal contamination in food and water. It can acquire, maintain, and transmit resistance genes from other organisms in the environment. E. coli serotype O157:H7 is an enterohaemorrhagic strain, which was initially recognized in the United States of America, as a cause of food-borne illness, and has emerged as an important enteric pathogen of considerable public health significance [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call