Abstract
Clustering web sessions is to group web sessions based on similarity and consists of minimizing the intra-group similarity and maximizing the inter-group similarity. The other question that arises is how to measure similarity between web sessions. Here in this paper we adopted a CLIQUE (CLUstering in QUEst) algorithm for clustering web sessions for web personalization. Then we adopted various similarity measures like Euclidean distance, projected Euclidean distance Jaccard, cosine and fuzzy dissimilarity measures to measure the similarity of web sessions using sequence alignment to determine learning behaviors. This has significant results when comparing similarities between web sessions with various measures, we performed a variety of experiments in the context of density based clustering, based on sequence alignment to measure similarities between web sessions where sessions are chronologically ordered sequences of page visits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.