Abstract
Clipping noise estimation and cancellation are essential in orthogonal frequency division multiplexing (OFDM) systems when clipping is performed to reduce the peak-to-average power ratio (PAPR). Motivated by the richer representational capacity of complex numbers and the fact that communication is a complex-valued problem, a novel clipping noise estimation scheme based on deep complex neural network is proposed in this paper. Specifically, the clipping noise is determined by a deep complex network, namely clipping noise estimation network (CNE-Net), such that the mean square error (MSE) and the sparsity of the estimated clipping noise are jointly optimized. Besides, an ordering based zero-forcing scheme is utilized to further ensure the sparsity of the estimated clipping noise. Simulation results show that the proposed CNE-Net shows comparable performance with the conventional decision-aided reconstruction (DAR) scheme and can achieve better performance than the one-iteration DAR scheme when the clipping noise is not sparse enough. In summary, the CNE-Net has a good capability to estimate the clipping noise from noise-affected features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.