Abstract
The nearest point problem (NPP), i.e., finding the closest points between two disjoint convex hulls, has two classical solutions, the Gilbert–Schlesinger–Kozinec (GSK) and Mitchell–Dem’yanov–Malozemov (MDM) algorithms. When the convex hulls do intersect, NPP has to be stated in terms of reduced convex hulls (RCHs), made up of convex pattern combinations whose coefficients are bound by a μ < 1 value and that are disjoint for suitable μ . The GSK and MDM methods have recently been extended to solve NPP for RCHs using the particular structure of the extreme points of a RCH. While effective, their reliance on extreme points may make them computationally costly, particularly when applied in a kernel setting. In this work we propose an alternative clipped extension of classical MDM that results in a simpler algorithm with the same classification accuracy than that of the extensions already mentioned, but also with a much faster numerical convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.