Abstract

Alite-belite-ye'elimite (ABY) cement is considered to be eco-cements with adequate mechanical properties and fewer CO2 emissions. The phase assemblage and ye’elimite content of ABY cement play a very important role in cement properties. In this study, ABY clinkers with increasing ye'elimite percentage (0.3 wt%-36.4 wt%) were prepared at 1300 °C and the phase composition was characterized by Rietveld Quantitative Phase Analysis combined with energy dispersive X-ray spectrometry. The ye'elimite formed with a calculated composition of Ca3.92Mg0.02Al2.81Fe0.05Si0.04S1.16, incorporating additional sulfur compared to the theoretical value. In addition, the hydration properties of heat evolution, hydration products and compressive strength of ABY cement are studied. The result shows that the increase of ye'elimite content leads to a more intense initial heat release and a higher cumulative heat release. The presence of ye'elimite inhibits the hydration of alite at early ages. ABY mortars with increasing ye'elimite (15.8 wt%) exhibited a higher strength (29.6 MPa) at 3 days by the contribution of ye'elimite hydration, and an increase (47.4 MPa) at 28 days. An adequate proportion of ye'elimite (<15 wt%) is favorable to the performance of ABY cement, and releases 12% less CO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.