Abstract

Epithelioid glioblastoma (eGBM) is a rare variant of GBM which was adopted in the 2016 WHO classification. eGBM and pleomorphic xanthoastrocytoma (PXA) sometimes show overlapping features histologically and genetically, such as epithelioid pattern and a highly frequent V600E mutation in the gene for vRAF murine sarcoma viral oncogene homolog B1 (BRAF), respectively. Accurate diagnosis of these rare tumors is challenging according to the new criteria in the revised 2016 WHO classification. It is an urgent task to elucidate the biological properties of the tumors and to select appropriate treatment. Twenty consecutive cases diagnosed as PXA or eGBM histologically were investigated. Twelve of the 20 cases were PXAs and eight were eGBMs. Morphologically, mitotic activity, necrosis and degenerative changes such as intracellular lipid accumulation, eosinophilic granular bodies and reticulin fiber deposits were scored. Immunohistochemical and molecular biological assessment for isocitrate dehydrogenases 1 and 2 (IDH1/2), α-thalassemia/mental-retardation-syndrome-X-linked gene (ATRX), p53, BRAF, telomere reverse transcriptase promoter (TERT-p), H3F3A, and integrase interactor 1 (INI1) were performed. eGBM tended to lack the degenerative changes characteristic for PXA. Of the 20 cases tested, Sanger technique showed no mutation in IDH1/2. BRAF mutation at T1799 > A (V600E) was detected in 4/12 (33.3%) PXA and 4/8 (50.0%) eGBM, while TERT-p mutation was detected at C228 > T in 2/12 (16.7%) PXA and at C250 > T in 1/8 (12.5%) eGBM. Retained nuclear ATRX was observed in 12/12 (100%) PXA and 6/7 (85.7%) eGBM while p53 mutation was observed in 2/10 (20%) PXA and 7/7 (100%) eGBM. All tumors retained INI1 expression in their nuclei. None of the tumors harbored H3F3A mutation. One PXA without BRAF mutation acquired TERT-p mutation at recurrence and one eGBM harbored both BRAF and TERT-p mutation. Molecular biological similarity between eGBM and PXA was suggested in our series, while degenerative changes reflected the features of PXA. It was speculated that the common genetic alterations for development and progression of eGBM and PXA might include BRAF and TERT-p mutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call