Abstract

This study aimed to elucidate the clinicopathological characteristics of breast tumors with homologous recombination deficiency (HRD) and the sensitivity to neoadjuvant paclitaxel followed by fluorouracil, epirubicin, and cyclophosphamide (P-FEC). Tumor biopsy samples obtained before P-FEC from 141 patients with stages II-III breast cancer including the luminal (n = 76), luminal-HER2 (n = 13), HER2 (n = 17), and triple-negative (TNBC, n = 35) subtypes were subjected to assay for HRD score using the OncoScan CNV FFPE Assay Kit. HRD score was a simple sum of NtAI, LOH, and LST (cutoff, 42). TNBCs were also subjected to the gene expression assay using the Affymetrix microarray (U133 plus 2.0) and to the BRCA1 promoter methylation assay using the methylation-specific real-time PCR. Of the 141 breast tumors, 45 samples (32%) had high HRD scores and were associated with high histological grade (P = 0.001), negative progesterone receptor (P = 0.018), high Ki67 index (P = 0.032), and BRCA1 promoter methylation (P = 3.6e-07). The proportion of tumors with high HRD scores was significantly higher in the TNBC subtype than the others (P = 0.006). In the TNBC subtype, but not the others, high HRD scores were significantly (P = 0.001) associated with a low pathological complete response rate to P-FEC. Among the molecular TNBC subtypes, a majority of tumors belonging to the basal-like 1, immunomodulatory, mesenchymal, mesenchymal stem-like, but not luminal androgen receptor (LAR), subtypes had high HRD scores. Approximately one-third of sporadic breast tumors show a high HRD score, indicating the presence of homologous recombination dysfunction, and they are characterized by biologically aggressive phenotypes, most commonly in the TNBC subtype, and less sensitive to P-FEC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call