Abstract

Metastatic breast cancer (MBC) remains a major clinical challenge, necessitating the development of innovative therapeutic strategies. Estrogen receptor (ER) degradation using proteolysis-targeting chimeras (PROTAC) has emerged as a promising approach for overcoming acquired resistance to endocrine therapy. This review will summarize recent findings, highlighting the role of ER degradation by PROTAC in patients with MBC. The application of PROTAC technology for ER degradation has demonstrated initial success in preclinical and early clinical studies. PROTACs, consisting of an ER-targeting moiety, an E3 ubiquitin ligase-recruiting moiety, and a linker, facilitate ER ubiquitination and subsequent proteasomal degradation. Yet, significant challenges persist in the clinical translation of ER degradation by PROTAC. These include the optimization of PROTAC design, elucidation of mechanisms underlying resistance to PROTAC-induced ER degradation, and identification of predictive biomarkers for patient stratification. Additionally, addressing potential off-target effects and toxicity profiles remains a critical aspect of developing PROTAC-based therapies. Recent data demonstrate the potential of ER degradation by PROTAC as a therapeutic strategy for patients with MBC. Continued research efforts and development of synergistic combinations are crucial for further advancing PROTAC-based therapies and improving outcomes in patients with MBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call