Abstract

BackgroundPositron emission tomography (PET)-derived LV MBF quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply. Previously we reported on an image-based tool to noninvasively measure absolute myocardial blood flow at locations just below individual epicardial vessel to help guide revascularization. The aim of this work is to determine the robustness of vessel-specific flow measurements (MBFvs) extracted from the fusion of dynamic PET (dPET) with coronary computed tomography angiography (CCTA) myocardial segmentations, using flow measured from the fusion with CCTA manual segmentation as the reference standard.MethodsForty-three patients’ 13NH3 dPET, CCTA image datasets were used to measure the agreement of the MBFvs profiles after the fusion of dPET data with three CCTA anatomical models: (1) a manual model, (2) a fully automated segmented model and (3) a corrected model, where major inaccuracies in the automated segmentation were briefly edited. Pairwise accuracy of the normality/abnormality agreement of flow values along differently extracted vessels was determined by comparing, on a point-by-point basis, each vessel’s flow to corresponding vessels’ normal limits using Dice coefficients (DC) as the metric.ResultsOf the 43 patients CCTA fully automated mask models, 27 patients’ borders required manual correction before dPET/CCTA image fusion, but this editing process was brief (2–3 min) allowing a 100% success rate of extracting MBFvs in clinically acceptable times. In total, 124 vessels were analyzed after dPET fusion with the manual and corrected CCTA mask models yielding 2225 stress and 2122 rest flow values. Forty-seven vessels were analyzed after fusion with the fully automatic masks producing 840 stress and 825 rest flow samples. All DC coefficients computed globally or by territory were ≥ 0.93. No statistical differences were found in the normal/abnormal flow classifications between manual and corrected or manual and fully automated CCTA masks.ConclusionFully automated and manually corrected myocardial CCTA segmentation provides anatomical masks in clinically acceptable times for vessel-specific myocardial blood flow measurements using dynamic PET/CCTA image fusion which are not significantly different in flow accuracy and within clinically acceptable processing times compared to fully manually segmented CCTA myocardial masks.

Highlights

  • Positron emission tomography (PET)-derived Left ventricle (LV) myocardial blood flow (MBF) quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply

  • We previously proposed a novel technique based on a multimodality image fusion approach of dynamic positron emission tomography and coronary CT angiography (CCTA) for the estimation of vessel-specific rest/stress (r/s) myocardial blood flow (MBF) along the three-dimensional (3D) trajectory of coronary vessels (Piccinelli et al 2020)

  • The aim of this work was to determine the dependence of ­MBFvs measurements from the fusion of dynamic PET (dPET) with clinically viable coronary computed tomography angiography (CCTA) myocardial segmentation, using as reference standard the ­MBFvs obtained from fusion of dPET with the manually delineated myocardium

Read more

Summary

Introduction

Positron emission tomography (PET)-derived LV MBF quantification is usually measured in standard anatomical vascular territories potentially averaging flow from normally perfused tissue with those from areas with abnormal flow supply. We previously proposed a novel technique based on a multimodality image fusion approach of dynamic positron emission tomography (dPET) and coronary CT angiography (CCTA) for the estimation of vessel-specific rest/stress (r/s) myocardial blood flow (MBF) along the three-dimensional (3D) trajectory of coronary vessels (Piccinelli et al 2020) The rationale behind this methodology is the creation of an image-based tool to noninvasively estimate the r/s absolute MBF and derived indexes, such as myocardial flow reserve (MFR) (Schindler et al 2014) and relative flow reserve (RFR) (Lee et al 2016), at precise locations underneath the perfusing vessel of interest and use it to guide treatment to the invasive assessment of FFR during LV catheterization. These studies did not determine the influence of the extracted anatomy on the fusion procedure and on the accuracy of our vesselspecific flow ­(MBFvs) estimates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call