Abstract

To experimentally compare the optical performance of three types of hydrophobic intraocular lenses (IOLs): extended depth of focus, bifocal, and trifocal. The tested IOLs were: TECNIS ZMB00 (bifocal; Abbott Medical Optics, Abbott Park, IL), TECNIS Symfony ZXR00 (extended depth of focus; Abbott Medical Optics), and FineVision GFree hydrophobic (trifocal; PhysIOL, Liège, Belgium). Their surface topography was analyzed by optical microscopy. Modulation transfer function (MTF) and spherical aberrations were determined on optical bench for variable pupil apertures and with two cornea models (0 µm and +0.28 µm). United States Air Force target imaging was analyzed for different focal points (near, intermediate, and far). Point spread function (PSF) and halos were quantified and compared. The three lenses presented step-like optic topography. For a pupil size of 3 mm or greater, clearly distinctive MTF peaks were observed for all lenses: two peaks for the extended depth of focus and bifocal lenses with +1.75 and +4.00 diopters (D) addition, respectively, and three peaks for the trifocal lens with +1.75 and +3.50 addition for intermediate and near vision, respectively. The extended depth of focus and bifocal lens had slightly higher MTF at best focus with the +0.28 µm cornea model than with the 0 µm model, whereas the trifocal lens was likely to be more independent of the corneal spherical aberrations. It appears that the three lenses rely on light diffraction for their optical performance, presenting halos with comparable intensities. For small pupil apertures (< 3 mm), the MTF peaks for the far and intermediate focal distances of the trifocal and extended depth of focus lenses overlap, but the trifocal lens presented an additional MTF peak for the near focal points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.