Abstract

AbstractGlobally a significant burden of tuberculosis (TB) is faced, which is difficult to eradicate due to patients' non‐adherence, and drug‐resistant strains that are spreading at an alarming rate. Novel approaches are required to improve diagnosis and treatment. Metallic nanoparticles (MNPs) have demonstrated potential as sensor probes and in combination therapy, which combines MNPs with antimycobacterial drugs to develop new treatment and theranostic approaches. To strengthen the theoretical foundation toward the clinical application of TB nanomedicine, this review focuses on the properties and effectiveness of therapeutically relevant MNPs. It also elaborates on their antimycobacterial mechanisms. This review aims to analyze the body of literature on the topic, pinpoint important empirical findings, and identify knowledge gaps that can provide a basis for future research endeavors and translation of the technologies. Current data suggest that MNPs are potential systems for efficient diagnosis and treatment although additional pre‐clinical and clinical research is needed to bring these technologies to the clinic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.