Abstract
IntroductionMutations in proteolipid protein (PLP), the most abundant myelin protein in the CNS, cause the X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2). Point mutations, deletion, and duplication of the PLP1 gene cause PMD/SPG2 with varying clinical presentation. Deletion of an intronic splicing enhancer (ISEdel) within intron 3 of the PLP1 gene is associated with a mild form of PMD. Clinical and preclinical studies have indicated that mutations in myelin proteins, including PLP, can induce neuroinflammation, but the temporal and spatial onset of the reactive glia response in a clinically relevant mild form of PMD has not been defined.MethodsA PLP-ISEdel knockin mouse was used to examine the behavioral and neuroinflammatory consequences of a deletion within intron 3 of the PLP gene, at two time points (two and four months old) early in the pathological progression. Mice were characterized functionally using the open field task, elevated plus maze, and nesting behavior. Quantitative neuropathological analysis was for markers of astrocytes (GFAP), microglia (IBA1, CD68, MHCII) and axons (APP). The Aperio ScanScope was used to generate a digital, high magnification photomicrograph of entire brain sections. These digital slides were used to quantify the immunohistochemical staining in ten different brain regions to assess the regional heterogeneity in the reactive astrocyte and microglial response.ResultsThe PLP-ISEdel mice exhibited behavioral deficits in the open field and nesting behavior at two months, which did not worsen by four months of age. A marker of axonal injury (APP) increased from two months to four months of age. Striking was the robust reactive astrocyte and microglia response which was also progressive. In the two-month-old mice, the astrocyte and microglia reactivity was most apparent in white matter rich regions of the brain. By four months of age the gliosis had become widespread and included both white as well as gray matter regions of the brain.ConclusionsOur results indicate, along with other preclinical models of PMD, that an early reactive glia response occurs following mutations in the PLP gene, which may represent a potentially clinically relevant, oligodendrocyte-independent therapeutic target for PMD.
Highlights
Mutations in proteolipid protein (PLP), the most abundant myelin protein in the central nervous system (CNS), cause the X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2)
Deletion of an intronic enhancer (ISEdel) within intron 3 of the Proteolipid protein 1 gene (PLP1) gene is associated with a mild form of PMD that presents with progressive neurological disability [34]
Behavior impairments are seen in two-month-old PLP-ISEdel mice Clinically, deletion of an Intronic splicing enhancer (ISE) within intron 3 of the PLP1 gene is associated with a mild form of PMD that presents with progressive neurological disability [34]
Summary
Mutations in proteolipid protein (PLP), the most abundant myelin protein in the CNS, cause the X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2). Clinical and preclinical studies have indicated that mutations in myelin proteins, including PLP, can induce neuroinflammation, but the temporal and spatial onset of the reactive glia response in a clinically relevant mild form of PMD has not been defined. The presence of activated microglia in a CNS disease can be a consequence of a tissue disturbance, such as dying cells (neurons or oligodendrocytes), and not a cause of the cell death. The housekeeping functions of microglia in the healthy CNS include: 1) phagocytosis of dying cells and cellular debris (such as myelin); 2) synaptic interactions and synaptic pruning; 3) regulation of neuronal activity; 4) suppression of inflammation mediated by inflammatory monocytes; 5) modulating neurogenesis and oligodendrogenesis (for review see: [4,5,6,7,8]). Genetic mutations affecting microglia function are linked to neurological disease (for review see: [9]); including, both neurodevelopmental disorders (MECP2 in the case of Rett syndrome [10]), and neurodegenerative disorders (CD33 and TREM2 in the case of Alzheimer’s disease [11]) for example
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.